scholarly journals STRESS AND DEVELOPMENTAL STABILITY: VEGETATION REMOVAL CAUSES INCREASED FLUCTUATING ASYMMETRY IN SHREWS

Ecology ◽  
2000 ◽  
Vol 81 (2) ◽  
pp. 336-345 ◽  
Author(s):  
Alexander V. Badyaev ◽  
Kerry R. Foresman ◽  
Miguel V. Fernandes
Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1970
Author(s):  
Nina Turmukhametova ◽  
Elena Shadrina

We have estimated the reproductive capacity of Betulapendula Roth and its relationship with an integrated measure of developmental stability, i.e., fluctuating asymmetry (FA) of the leaf. On the territory of a city with moderate anthropogenic pollution, a change has been detected in the integrated fluctuating asymmetry (IFA) of the morphology of the female reproductive sphere and reproductive capacity of Betula pendula. In conditions of anthropogenic stress, the birch is observed to produce a large yield of fruits annually, which is not subject to year-to-year fluctuations. Morphological variety of size and shape of fruit-producing organs increases along the gradient of industrial and transport pollution; part of morphotypes of infructescences and seeds is characterized by lowered or zero capacity for reproduction determined by seed quality (germination energy and germination capacity). The statistical data processing involved correlation, Shapiro–Wilk test, Levene’s test, factorial ANOVA, Scheffe test, Kruskal–Wallis ANOVA, Mann–Whitney test, χ2 method. Analysis of IFA has allowed us to reasonably well assess the state of the plant organism and to characterize environmental quality. A negative correlation between IFA and quantitative parameters of the functions of the reproductive sphere of B. pendula (infructescence diameter, seed quality) has been found, and positive correlation with qualitative parameters (the number of morphs of infructescences and seeds, the share of rare morphs of infructescences). Pessimization of urban environment creates the conditions for an increase in the share of defective infructescences and non-germinating seeds; a compensatory mechanism for this is an increase in reproductive effort of B. pendula. The consistency of responses in the vegetative and reproductive spheres reflects the disturbances in developmental stability of plants in urban communities.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1317 ◽  
Author(s):  
Elena Shadrina ◽  
Nina Turmukhametova ◽  
Victoria Soldatova ◽  
Yakov Vol'pert ◽  
Irina Korotchenko ◽  
...  

The fluctuating asymmetry (FA) in Betula pendula Roth was estimated as an integrated measure of five morphometric characteristics of a lamina. Samples were collected in seven cities that differ both in climatic conditions, moderately to sharply continental. In total, 33 ecotopes were distinguished with various level of anthropogenic load. The statistical data processing involved correlation, one-way and factorial ANOVA, regression analyses, and principal component analysis (PCA). The impact of 25 climatic and anthropogenic factors on the FA value was considered. In most urban ecotopes, the integrated fluctuating asymmetry (IFA) value was higher than in natural biotopes of the same region. No significant inter-annual differences in IFA values were found. FA dependence on traffic load is noted to be statistically significant. The covariation analysis of IFA, climatic, and anthropogenic variables in various urban ecotopes revealed the impact of three groups of factors that together explain 93% of the variance in environmental parameters. The complex analysis clearly arranged the studied ecotopes by pollution gradient and climatic patterns. The primary effect of the total anthropogenic load on the developmental stability of B. pendula results in an IFA increase. IFA can play a key role in bioindication assessment of environmental quality. The climatic factors have no significant effect on the developmental stability of B. pendula in urban conditions.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1376 ◽  
Author(s):  
Vladimir M. Zakharov ◽  
Elena G. Shadrina ◽  
Ilya E. Trofimov

Developmental noise—which level may vary within a certain backlash allowed by natural selection—is a reflection of the state of a developing system or developmental stability. Phenotypic variations inside the genetically determined norm observed in case of fluctuating asymmetry provide a unique opportunity for evaluating this form of ontogenetic variability. Low levels of developmental noise for the biologic system under study is observed under certain conditions, while its increase acts as a measure of stress. The concordance of changes in developmental stability with changes in other parameters of developmental homeostasis indicates the significance of fluctuating asymmetry estimates. All this determines the future prospects of the study of fluctuating asymmetry not only for developmental biology, but also for population biology. The study of developmental stability may act as the basis of an approach of population developmental biology to assess the nature of the phenotypic diversity and the state of natural populations under various impacts and during evolutionary transformations.


1994 ◽  
Vol 5 (5) ◽  
pp. 297-302 ◽  
Author(s):  
Randy Thornhill ◽  
Steven W Gangestad

This report presents evidence that sexual selection may favor developmental stability (i e, the absence of fluctuating asymmetry) in humans Subtle, heritable asymmetries in seven nonfacial human body traits correlated negatively with number of self-reported, lifetime sex partners and correlated positively with self-reported age at first copulation in a college student sample These relationships remained statistically significant when age, marital status, body height, ethnicity, physical anomalies associated with early prenatal development, and physical attractiveness were statistically controlled The strength of the relationships did not differ significantly as a function of sex It is unlikely that the relationships are generated by false self-reporting of sexual experience


Author(s):  
P. M. Parés–Casanova ◽  
J. Minoves ◽  
J. Soler ◽  
A. Martínez–Silvestre

Fluctuating asymmetry (FA) refers to subtle differences between left and right sides in bilaterally symmetrical organisms or their parts. Both genetic and environmental changes can increase FA, reflecting deterioration in developmental homeostasis of adult morphology due to a loss of developmental stability. In this study, we used geometric morphometric techniques to examine plastral scute asymmetries in a sample of 31 pure and crossed Testudo species (T. hermanni hermanni n = 23 and crosses with T. hermanni boettgeri n = 8) only females by means of 19 anatomical landmarks. Procrustes ANOVA indicated that FA in crossed individuals was significantly higher than that in pure individuals. Crossed individuals also showed a greater degree of phenotypic plasticity than T. hermanni hermanni. We conclude that crosses among T. hermanni hermanni and T. hermanni boettgeri can increase homozygosity and are responsible for greater developmental instabilities. Nonetheless, more information on crossed phenotypes could be of great interest to raise pure Hermann’s tortoises for reintroduction programmes. Key words: Carapace, Geometric morphometrics, Hybridization, Plastron, Testudines


2017 ◽  
Author(s):  
Delphine Dardalhon-Cuménal ◽  
Jérôme Deraze ◽  
Camille A Dupont ◽  
Valérie Ribeiro ◽  
Anne Coléno-Costes ◽  
...  

AbstractIn Drosophila, ubiquitous expression of a short Cyclin G isoform generates extreme developmental noise estimated by fluctuating asymmetry (FA), providing a model to tackle developmental stability. This transcriptional cyclin interacts with chromatin regulators of the Enhancer of Trithorax and Polycomb (ETP) and Polycomb families. We investigate here the importance of these interactions in developmental stability. Deregulation of Cyclin G highlights an organ intrinsic control of developmental noise, linked to the ETP-interacting domain, and enhanced by mutations in genes encoding members of the Polycomb Repressive complexes PRC1 and PR-DUB. Deep-sequencing of wing imaginal discs deregulating CycG reveals that high developmental noise correlates with up-regulation of genes involved in translation and down-regulation of genes involved in energy production. Most Cyclin G direct transcriptional targets are also direct targets of PRC1, ASX and RNAPolII in the developing wing. Altogether, our results suggest that Cyclin G, PRC1 and PR-DUB cooperate for developmental stability.


Sign in / Sign up

Export Citation Format

Share Document